E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions.
نویسندگان
چکیده
E-cadherin function leads to the density-dependent contact inhibition of cell growth. Because cadherins control the overall state of cell contact, cytoskeletal organization, and the establishment of many other kinds of cell interactions, it remains unknown whether E-cadherin directly transduces growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta-catenin-dependent mechanism. It does not affect EGF receptor autophosphorylation or activation of ERK, but it inhibits transphosphorylation of Tyr845 and activation of signal transducers and activators of transcription 5. Thus, E-cadherin homophilic binding independent of other cell contacts directly transduces growth inhibition by a beta-catenin-dependent mechanism that inhibits selective signaling functions of growth factor receptors.
منابع مشابه
Expression of Epidermal Growth Factor Receptor and the association with Demographic and Prognostic Factors in Patients with Non-small Cell Lung Cancer
Introduction: Growth, proliferation, survival, and differentiation are the prominent characteristics of cells, which are affected by cancer. Epidermal growth factor receptor (EGFR) plays a pivotal role in the effective control of these features. Given the significance of EGFR signaling pathway in non-small cell lung cancer (NSCLC), EGFR expression is influential on these cell characteristics. I...
متن کاملAltered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma
EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...
متن کاملDirect cadherin-activated cell signaling: a view from the plasma membrane
Classical cadherin adhesion molecules exert profound and varied effects on cell behavior and tissue organization. It is commonly believed that cadherins support stable cell–cell contacts to maintain tissue cohesion, both during development and in post-embryonic life. But cadherins also participate in dynamic morphogenetic events: changes in cadherin repertoire influence cell sorting and tissue ...
متن کاملE-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components.
Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylati...
متن کاملInduction of apoptosis in cultured endothelial cells by a cadherin antagonist peptide: involvement of fibroblast growth factor receptor-mediated signalling.
Cadherins are a family of transmembrane glycoproteins mediating calcium-dependent, homophilic cell-cell adhesion. In addition, these molecules are involved in signaling events, regulating such processes as cell motility, proliferation, and apoptosis. Members of the cadherin subfamily, called either classical or type I cadherins, contain a highly conserved sequence at their homophilic binding si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2007